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SUMMARY

A set of non-homogeneous radiation and outflow boundary conditions which automatically generate
prescribed incoming acoustic or vorticity waves and, at the same time, are almost transparent to outgoing
sound waves produced internally in a finite computation domain is proposed. This type of boundary
condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational
aeroacoustics, the computation scheme must be as non-dispersive and non-dissipative as possible. It must
also support waves with wave speeds which are nearly the same as those of the original linearized Euler
equations. To meet these requirements, a high-order/large-stencil scheme is often necessary. The proposed
non-homogeneous radiation and outflow boundary conditions are designed primarily for use in conjunc-
tion with such high-order/large-stencil finite difference schemes. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: computational aeroacoustics; radiation boundary conditions; scattering of sound or vorticity waves;
high-order finite difference solutions

1. INTRODUCTION

Many exterior aeroacoustic problems involve incoming acoustic or vorticity waves interacting
with an aircraft engine or the body of the aircraft. An example of this type of problem that is
of current interest is the noise generation by the ingestion of free stream turbulence into a fan
engine. Another example is the scattering and shielding of sound waves by aircraft wings and
fuselage. To simulate these problems using computational aeroacoustics methods, the incom-
ing acoustic and vorticity waves must be generated by the boundary conditions imposed at the
outer boundaries of the finite computation domain. In this paper, a set of non-homogeneous
radiation and outflow boundary conditions are proposed, which, when used in conjunction
with a high-order finite difference scheme, automatically generate the desired incoming
acoustic and vorticity waves.

In the presence of a uniform mean flow, the linearized Euler equations support three
independent types of small amplitude disturbances. They are the acoustic, the vorticity and the
entropy waves. These waves, to linear order, are uncoupled and propagate with different
characteristics and wave speeds (see e.g. Reference [1]). In the computational aeroacoustics
literature, there seems to be an absence of good suggestions as to how to generate such
disturbances in the form of incoming waves.
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It is well-known that the solutions of finite difference equations do not perfectly approxi-
mate those of the original partial differential equations. However, by choosing the stencil
coefficients of a high-order (large-stencil) finite difference scheme appropriately, one can be
sure that the part of the solution involving low wave numbers or the long waves are adequately
reproduced by the finite difference solution. If a seven-point stencil is used, wave components
with wavelengths \7–8 mesh spacings fall into this category. On the other hand, the short
wave components of the finite difference scheme inevitably behave quite differently from those
of the partial differential equation. This has been discussed at lengths in the work of Trefethen
[2] and Tam et al. [3]. The short waves are pollutants of a numerical solution. To eliminate the
numerical short waves, artificial selective damping is often added to the finite difference
scheme. The artificial selective damping terms are designed to eliminate the short (large wave
number) waves, but leave the long waves practically undisturbed. The short waves are
generated primarily at the boundaries of the computation domain, including internal
boundaries such as solid surfaces. The generation of excessive short waves especially the
grid-to-grid oscillations at a boundary usually leads to numerical instability. One way to
suppress this type of instability is to add stronger artificial damping in the boundary regions.
A large symmetric stencil would not fit near a boundary, therefore, shorter damping stencils
are used for mesh points adjacent to the boundary. A set of optimized damping stencil
coefficients can be found in a recent review article by Tam [4].

For many finite difference schemes, the addition of artificial damping terms often lead to
mode coupling. That is, the acoustic, vorticity and entropy wave modes of the numerical
scheme are no longer independent. This type of coupling is undesirable. It leads to the gradual
degradation of an incoming acoustic wave into an entropy or vorticity wave, as the acoustic
wave propagates across the computation domain. When simulating an incoming vorticity
wave, it could lead to the generation of spurious acoustic waves, especially at the boundary
regions of the computation domain.

There will be discretization error if a finite difference scheme is used to determine the wave
solution of partial differential equations. The exact solution of the finite difference equation is
not equal to the exact solution of the partial differential equations. In trying to simulate an
incoming acoustic or vorticity wave computationally, it is best to reproduce the exact acoustic
or vorticity wave solution of the finite difference equations. In this paper, the main issue is not
whether the exact finite difference solution is a good approximation of that of the original
partial differential equation. It is assumed that it is a good approximation, because a
high-order finite difference algorithm used. The aim of this work is how to generate an
incoming wave through the imposition of non-homogeneous boundary conditions on a finite
computation domain, such that it is almost identical to the exact incoming wave solution of
the finite difference equations in an infinite domain.

In this work, the dispersion-relation-preserving (DRP) scheme of Tam and Webb [1] is used
for numerical computation. There are two reasons for choosing the DRP scheme. First, the
DRP scheme was designed so that the dispersion relations of the finite difference equations are
always formally identical to those of the original partial differential equations. Not only does
this make the waves supported by the numerical scheme an excellent approximation of those
of the partial differential equations, but it also assures that there will be no wave mode
coupling in the numerical simulation. The second reason for choosing the DRP scheme is that
the exact plane acoustic, vorticity and entropy wave solutions of the finite difference equations
can be found analytically. This is discussed in Section 2 of this paper. These exact solutions are
used in formulating the non-homogeneous radiation and outflow boundary conditions.
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Over the years, there have been a number of investigations devoted to the development of
radiation/non-reflecting boundary conditions, but without incoming waves. One group of
investigators used asymptotic solutions to construct radiation boundary conditions. These
investigators include Bayliss and Turkel [5,6], Hagstrom and Hariharan [7], Hariharan et al.
[8], Tam and Webb [1], and Tam and Dong [9], to mention a few. Another group used the idea
of characteristics. These investigators include Thompson [10,11] and Poinsot and Lele [12]. Still
another group devised ways of constructing absorbing boundary conditions to minimize the
reflection of waves off the artificial boundary of the computation domain. Investigators of this
group are Engquist and Majda [13,14], Higdon [15,16], Jiang and Wong [17], Kosloff and
Kosloff [18], and Colonius et al. [19]. Givoli [20] wrote a review article on this subject with
extensive references.

Recently, Hixon et al. [21] performed a detailed evaluation of the suitability of using the
Thompson [10,11] quasi-one-dimensional characteristic boundary condition, the Giles [22]
Fourier mode decomposition boundary treatment and the asymptotic boundary conditions of
Tam and Webb [1] for computational aeroacoustics applications. They concluded that for their
test problem, the radiation and outflow boundary conditions of Tam and Webb gave the least
reflections and provided the only acceptable boundary treatment. Their recommendations are
followed in this work, and the asymptotic boundary conditions of Tam and Webb are used to
develop the non-homogeneous radiation, inflow and outflow boundary conditions that would
automatically produce very accurate incoming acoustic and vorticity waves in a finite compu-
tation domain.

2. ACOUSTIC AND VORTICITY WAVES ON A GRID

Small amplitude disturbances superimposed on a uniform mean flow of Mach number M are
considered, as shown in Figure 1. Such disturbances are governed by the linearized Euler
equations. Dimensionless variables with length scale=Dx=Dy (the mesh spacing), velocity
scale=a0 (speed of sound), time scale=Dx/a0, and pressure scale=r0a0

2 (where r0 is the gas
density) are used. The dimensionless linearized Euler equations are

(F
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=0, (2.1)
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In Equation (2.2), Mx and My are the mean flow Mach numbers in the x- and y-directions. If
f is the direction of the mean flow measured from the x-axis, then Mx=M cos f, My=
M sin f.

Upon discretizing Equation (2.1) according to the DRP scheme, the finite difference
equations may be written in the following form

Fl,m
(n+1)=Fl,m

(n) +Dt %
3

j=0

bjKl,m
(n− j). (2.3)
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Subscripts (l, m) are the spatial indices of the mesh in the x- and y-directions. Superscript n
is the time level. Dt is the time step. The vector Kl,m

(n) is given by

Kl,m
(n) = −R %

3

j= −3

ajFl+ j,m
(n) −S %

3

j= −3

ajFl,m+ j
(n) −

1
RDx

%
3

j= −3

dj(Fl+ j,m
(n) +Fl,m+ j

(n) ). (2.4)

The last sum on the right side of (2.4) is the artificial damping terms. RDx is the mesh Reynolds
number. The numerical values of the stencil coefficients aj, bj and dj may be found in Reference
[4].

The plane wave solutions of finite difference Equations (2.3) and (2.4) are sought over an
infinite mesh. The analytical form of the finite difference solution is

Fl,m
(n) =Re{F. ei(al+bm−vnDt)}. (2.5)

In (2.5), Re{ } is the real part. F. is the wave amplitude vector (a constant vector). (a, b) are
the wave numbers. v is the angular frequency. Substituting Equation (2.5) into (2.3) and (2.4),
after some algebra, the following matrix equation for F. is derived.

AF. =0. (2.6)

The matrix A is equal to

Figure 1. Computational domain showing uniform mean flow and the direction of propagation of incoming plane
acoustic or vorticity waves.
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ā

0
−ṽ
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ā

b(
−ṽ
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The quantities (ā, b( ) and v̄ are the wave numbers and angular frequency of the computation
scheme [1] (the DRP scheme). D(a) and D(b) are the artificial selective damping functions
[3,4].

For the non-trivial solution of Equation (2.6), the determinant of the coefficient matrix A
must be equal to zero. This condition leads to the general dispersion relation

ṽ(ṽ2− ā2−b( 2)=0. (2.9)

It should be noted that the dispersion-relation-preserving scheme assures that the dispersion
relation (2.9) is the same as that of the waves of the original linearized Euler equations,
provided the following substitutions are made: v̄�v, ā�a, b( �b and 1/RDx�0.

2.1. Acoustic wa6es

For acoustic waves, the dispersion relation is obtained by equating the second factor of
Equation (2.9) to zero. This gives,�

v̄−Mxā−Myb( +
i(D(a)+D(b))
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− ā2−b( 2=0. (2.10)

The corresponding eigenvector is
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Suppose the direction of propagation of the incoming plane acoustic waves is x (measured
from the x-axis), as shown in Figure 1. In this case the direction of propagation is taken to be
normal to the lines of constant phase. It follows, therefore, that a and b must be such that

tan x=
b

a
. (2.12)

A plane acoustic wave may be characterized by its frequency v and the direction of
propagation x. The wave numbers (a, b) of such a wave can be found by solving Equations
(2.10) and (2.12) simultaneously. With the inclusion of artificial damping in the finite difference
scheme, Equation (2.4), the wave numbers (a, b) of the wave are complex. Since only a small
amount of damping is added, the imaginary parts are small. However, the wave numbers of
the corresponding acoustic wave solution of the linearized Euler equations are real. To show
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Table I. Wave numbers of acoustic waves M=0.5, f=30°, x=60°, and
1/RDx=0.025

bDRP aEulerv aDRP bEuler

0.24173+0.231E−04i 0.139570.4 0.241740.13956+0.133E−04i
0.27913 0.483470.48336+0.937E−04i0.27907+0.541E−04i0.8

0.34875+0.870E−04i 0.60405+0.151E−03i 0.34892 0.604341.0
0.725210.418700.72468+0.229E−03i0.41839+0.132E−03i1.2

that the long waves of the DRP scheme (with artificial damping terms) can provide a good
approximation to the acoustic wave solution of the linearized Euler equations, let us consider
the case M=0.5, f=30°, x=60°, 1/RDx=0.025 and Dt=0.05. The wave numbers of the
exact solutions of the DRP scheme and the linearized Euler equations are shown in Table I.
Table II gives the corresponding eigenvectors (amplitude).

It is easy to see from these tables that the exact acoustic wave solution of the DRP finite
difference equations is an excellent approximation of that of the linearized Euler equations.
There are at least three figures of accuracy, even for relatively high frequency waves with a
wavelength of about eight mesh spacings.

2.2. Vorticity wa6es

The dispersion relation for the vorticity waves of the finite difference scheme is given by
setting ṽ to zero in Equation (2.9); i.e.

v̄−Mxā−Myb( +
i

RDx

(D(a)+D(b))=0. (2.13)

The corresponding eigenfunction is
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. (2.14)

Let c be the angle between the lines of constant phase of the vorticity waves and the x-axis
(see Figure 1) then

tan c= −cot x= −
a

b
. (2.15)

A vorticity wave may be specified by its frequency v and the phase angle c. The wave
numbers of such waves are found by solving Equations (2.13) and (2.15) simultaneously.

Table II. Eigenvectors of acoustic waves

uEuler 6Eulerv uDRP 6DRP

0.4 0.49999−0.323E−08i 0.86603+0.186E−08i 0.50000 0.86603
0.866030.500000.86609+0.390E−07i0.8 0.49989−0.676E−07i

0.500000.49979−0.132E−06i1.0 0.866030.86615+0.760E−07i
0.86620+0.613E−07i 0.866030.49970−0.106E−06i 0.500001.2
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Table III. Wave numbers of vorticity waves M=0.5, f=30°, c=120°, and
1/RDx=0.05

bDRP aEulerv aDRP bEuler

0.29990+0.155E−03i 0.519620.3 0.300000.51944+0.269E−03i
0.69282 0.400000.39971+0.167E−03i0.69231+0.289E−03i0.4
0.86603 0.500000.5 0.86527+0.262E−03i 0.49956+0.152E−03i

0.60015+0.225E−03i 1.039230.6 1.03950+0.391E−03i 0.60000

Because of the inclusion of artificial damping terms, the wave numbers are again complex.
Table III provides a numerical example of the case of plane vorticity waves, with c=120°
superimposed on a mean flow at M=0.5, f=30°, 1/RDx=0.05 and Dt=0.0567. The
corresponding eigenvectors (2.14) are given in Table IV. The numerical values in these tables
indicate again that there is excellent agreement between the finite difference (DRP scheme)
solution in an infinite mesh and the exact vorticity wave solution of the linearized Euler
equations.

3. NON-HOMOGENEOUS RADIATION AND OUTFLOW BOUNDARY
CONDITIONS

The procedure for numerical simulation of exterior aeroacoustics problems involving incoming
acoustic or vorticity waves is now discussed. By necessity, the computation domain is finite.
Without loss of generality, the flow configuration is set as in Figure 1. With the inflow as
prescribed, the bottom and the left side of the computation domain constitute the inflow
boundaries. The right and top sides are the outflow boundaries.

In the absence of incoming waves, the radiation boundary conditions of Tam and Webb [1],
which are the same as those of Bayliss and Turkel [5], may be imposed along the inflow
boundaries. In polar co-ordinates (r, u) with the origin at the center of the computation
domain, these radiation boundary conditions for the outgoing waves, Fout, may be written as,

(Fout

(t
= −V(u)

� (
(r

+
1
2r
�

Fout. (3.1)

The acoustic wave propagation velocity V(u) of Equation (3.1) is equal to,

V(u)=M cos(u−f)+ [1−M2 sin(u−f)]1/2. (3.2)

Along the outflow boundaries, Tam and Webb showed that the outgoing disturbances may be
comprised of acoustic, vorticity and entropy waves. By means of the asymptotic solutions of
these waves, they demonstrated that for pressure, pout, the outflow boundary condition is the

Table IV. Eigenvectors of vorticity waves

v uDRP 6DRP uEuler 6Euler

0.3 0.49986−0.259E−03i −0.86610−0.449E−08i 0.50000 −0.86603
−0.866030.50000−0.86619−0.363E−07i0.4 0.49972−0.209E−03i
−0.866030.50000−0.86617−0.262E−07i0.49975−0.152E−03i0.5
−0.866030.50000−0.86576−0.319E−07i0.6 0.50045−0.188E−03i
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same as in Equation (3.1). For the velocity components, (uout, 6out), the approximate
outflow boundary conditions are,

(
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�uout

6out

n
= −
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+My

(

(y
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6out

n
−Ã

Ã

Ã
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Ã
Ã

Ã

Ç

É
pout. (3.3)

3.1. Incoming acoustic wa6es

As discussed in Section 2, an incoming plane acoustic wave on a grid has a mathematical
solution in the form<u

6

p

=(n)

l,m


F=Re{F. ei(al+bm−vnDt)}, (3.4)

where F. , the eigenvector, is given by Equation (2.11) and the wave numbers (a, b) are
found by solving (2.10) and (2.12) simultaneously. Let Fl,m

(n) be the numerical solution of the
discretized linearized Euler equations. At the inflow boundaries, Fl,m

(n) is made up of the
incoming and the outgoing acoustic waves. By subtracting F of Equation (3.4) from Fl,m

(n) ,
the outgoing acoustic wave solution, Fout, is

Fout=Fl,m
(n) −F. (3.5)

Now Fout, being purely outgoing waves, must satisfy radiation boundary condition (3.1).
It is to be noted that F and Fl,m

(n) and hence Fout are defined only on the solution mesh. To
implement Equation (3.1), the spatial and time derivatives must be discretized first. Equa-
tion (3.1) may be rewritten in the form

(

(t
[Fl,m

(n) −Re(F. ei(al+bm−vnDt))]=W, (3.6)

where W is

W= −V(u)
�

cos u
(

(x
+sin u

(

(y
+

1
2r
n

[Fl,m
(n) −Re(F. ei(al+bm−vnDt))]+damping terms.

(3.7)

The discretized form of (3.6) following the DRP scheme is,

Fl,m
(n+1)=Fl,m

(n) +Dt %
3

j=0

bjWl,m
(n− j)+Re{F. ei(al+bm−vnDt)(e− ivDt−1)}. (3.8)

In the inflow boundary region (see Figure 2); i.e. the bottom three rows and the left-most
three columns of mesh points, backward difference stencils are used to approximate the
spatial derivatives of (3.7). The particular backward difference stencils to be used depend
on the location of the point relative to the boundary of the computation domain. For
example, for the corner point ‘A ’ with l=L and m=M as shown in Figure 2, the
discretized form of (3.7) is,
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Figure 2. Backward difference stencils used to approximate spatial derivatives in the inflow boundary region of the
computational domain.

WL,M
(n) =V(uL,M)

!
cos(uL,M) %

4

j= −2
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24[FL+ j,M
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, (3.9)

where (rL,M, uL,M) are the polar co-ordinates of the point ‘A ’. dj
(5) and dj

(3) are the coefficients
of the five-point and three-point damping stencils [4]. Equation (3.8), supplemented by
formulae for Wl,m

(n) in the form of (3.9), is the desired non-homogeneous radiation boundary
conditions.

On the outflow boundaries, the computed solution (u, 6, p) consists of the incoming acoustic
waves F of Equation (3.4), and the as yet unknown outgoing disturbances (uout, 6out, pout); i.e.

Ã
Æ

È

uout

6out

pout

Ã
Ç

É
=Ã
Æ

È

u
6

p
Ã
Ç

É
−Re(F. ei(al+bm−vnDt)). (3.10)

The boundary conditions (3.3) should be satisfied by (uout, 6out, pout), which are purely outgoing
disturbances along the outflow boundaries. For pout, the same condition as at the inflow
boundaries may be used.
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To implement Equation (3.3) with the inclusion of artificial damping terms according to the
DRP scheme, first (3.10) is used to recast the equation into the form,

(

(t
�u
6
−Re

!�F1

F2

�
ei(al+bm−vnDt)"n=H. (3.11)

The discretized form of Equation (3.11) is�u
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(m− j)+Re
!�F1

F2

�
ei(al+bm−vnDt)(e− ivDt−1)

"n
. (3.12)

In developing the discretized form of H, backward difference stencils are again used to
approximate the spatial derivatives. These stencils may vary from point to point, depending on
their location relative to the boundary of the computation domain. For instance, for the
boundary point ‘B ’ in Figure 3, with l=L and m=M, the discretized function H, including
the artificial damping terms, is
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É

Figure 3. Backward difference stencils used to approximate spatial derivatives in the outflow region of the computa-
tional domain.
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Equation (3.12), supplemented by formulas of the form of (3.13), provides the non-homoge-
neous outflow boundary conditions.

To test whether non-homogeneous radiation boundary conditions (3.8) and (3.9) and
outflow boundary conditions (3.12) and (3.13) can generate an accurate plane acoustic wave
propagating across the finite computation domain without the simultaneous generation of
spurious vorticity or entropy waves, a series of numerical simulations have been carried out.
In the simulations, a 100×100 mesh was used. In the interior region, time marching scheme
Equations (2.3) and (2.4) were used to time step the solution to a periodic state. Along the
inflow boundaries, the variables of the solution were updated using non-homogeneous radia-
tion boundary conditions (3.8) and (3.9). Along the outflow boundaries, non-homogeneous
outflow boundary conditions (3.12) and (3.13) were used. Figure 4 shows the time history of
convergence to the exact finite difference acoustic wave solution for the case M=0.5, f=30°,
x=60°, v=1.2 and 1/RDx=0.025. The ordinate is the maximum error, defined as the
absolute value of the maximum difference (over the entire computation domain) between the
numerical solution and the exact solution of the finite difference equations. The abscissa is the
number of time steps. For this simulation, a zero acoustic wave initial condition was used.
Over time, the computed solution converges to the exact incoming wave solution to machine
accuracy.

Figure 5 shows typical error (in comparison with the exact finite difference solution) of the
pressure variable, p, at each mesh point of the finite computation domain at the beginning of
an oscillation cycle, after the numerical solution has reached a time periodic state. The error
is less than 10−13 everywhere. The error of the velocity variables are of a similar order of
magnitude.

3.2. Incoming 6orticity wa6es

A set of non-homogeneous radiation and outflow boundary conditions for incoming
vorticity waves can be formulated in exactly the same way as discussed above. According to
Section 2.2, an incoming vorticity wave on a grid has the mathematical representation of

Ã
Æ

È

u
6

p
Ã
Ç

É

G=Re{G. ei(al+bm−vnDt)}, (3.14)

where G. is given by Equation (2.14), and (a, b) are the simultaneous solution of (2.14) and
(2.15). It should be noted that the main difference between an incoming vorticity wave and an
acoustic wave is the replacement of F of Equation (3.4) by G of (3.14). It is clear, therefore,
that the desired non-homogeneous radiation boundary conditions for an incoming vorticity
wave can be found by the substitution of F by G in the non-homogeneous terms of (3.8) and
(3.9). Similarly, by replacing F by G in Equations (3.12) and (3.13), the corresponding
non-homogeneous outflow boundary conditions are obtained.
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Figure 4. Convergence history of direct numerical simulation of incoming acoustic wave on a 100×100 grid. M=0.5,
f=30°, x=60°, v=1.2, 1/RDx=0.025. —— u, - - - - 6, – · – · – · – p.

A series of numerical simulations for an incoming vorticity wave superimposed on a uniform
mean flow has been carried out using a 100×100 grid. The convergence history for the case
M=0.5, f=30°, c=120°, v=0.4 and 1/RDx=0.025 is similar to that of Figure 4. The error
is again very small everywhere, with a distribution similar to that of Figure 5.

4. APPLICATIONS

This section reports the results of applying the non-homogeneous radiation and outflow
boundary conditions developed in the previous section to the numerical simulation of the
scattering of plane acoustic waves by a cylinder and the generation of sound by the interaction
of a flat plate in a gust.
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4.1. Scattering of acoustic wa6es by a solid cylinder

The problem of the scattering of acoustic waves by a solid cylinder was simulated
numerically in the time domain. The incoming acoustic waves were generated by the non-ho-
mogeneous radiation boundary conditions of Section 3. A 320×320 mesh was used in the
computation. The cylinder with a diameter of 32 was placed in the center of the computation
domain as shown in Figure 6. Plane acoustic waves with a wave length of eight mesh spacings
entered the computation domain from the left boundary. In the numerical simulation, the
linearized Euler equations were solved using the DRP scheme (Equations (2.3) and (2.4)). A
Cartesian boundary treatment using ghost values of pressure to enforce the solid surface
boundary condition of zero normal fluid velocity, developed recently by Kurbatskii and Tam
[23], was applied around the surface of the cylinder. A zero acoustic wave initial condition was
used to start the computation. The solution was marched in time until a time periodic state
was reached.

Figure 6 shows the contours of zero pressure obtained by the numerical simulation. The zero
pressure contours of the exact solution are also plotted in this figure as dotted curves. There
is good agreement between the numerical and the exact solution, so that the two sets of curves
are almost indistinguishable. In Figure 6, the shadow zone behind the cylinder shows up

Figure 5. Perspective diagram showing error in p at each grid point at the beginning of a cycle of oscillation after the
incoming acoustic wave solution has been established over the entire computation domain. M=0.5, f=30°, x=60°,

v=1.2.
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Figure 6. Map of the zero pressure contours at the beginning of a cycle associated with the scattering of plane acoustic
waves by a solid cylinder. Wavelength=8Dx, diameter of the cylinder=32Dx.

prominently. There are strong scattered waves propagating backwards to the two sides of the
cylinder. They are responsible for the wiggles of the zero pressure contours of the figure. The
good agreement between the numerical and exact solution provides strong evidence that the
proposed non-homogeneous radiation boundary conditions are accurate and effective.

4.2. Sound generation by the interaction of a flat plate in a gust

As another application of the non-homogeneous radiation and outflow boundary condi-
tions, numerical simulations of sound generation by the interaction of a flat plate in a gust
(vorticity waves) were performed. The case of M=0.5 and a vertical gust with

u=0, 6=0.1 sin
�p

8
� x

M
− t

�n
,

as shown in Figure 7 was considered. A 200×200 mesh was used. The flat plate had a length
of 30. It was located on the x-axis in the center of the computation domain. The incoming
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vorticity waves were convected into the computation domain by the mean flow from the left
boundary. The DRP time marching scheme was again used. The wall boundary condition on
the plate was enforced by the ghost point method. Non-homogeneous radiation boundary
conditions were imposed on the left, top and bottom boundary regions. Non-homogeneous
outflow boundary conditions were imposed on the right boundary. The numerical solution was
time stepped from a zero vorticity wave initial condition until a time periodic state was
established.

Figure 8 shows the computed directivity of acoustic radiation in the top half-plane. No exact
solution of the present problem is available for comparison. Also shown in this figure are the
computed directivities using two and three times the original spatial resolution. It is clear from
the numerical results that there is numerical convergence. This gust-plate interaction problem
is a generic turbomachinery noise problem. Direct numerical simulation of this problem as a
scattering problem in the time domain has never been carried out before.

5. CONCLUSIONS

A set of non-homogeneous radiation and outflow boundary conditions designed for use in
conjunction with high-order/large-stencil finite difference schemes has been developed. The
non-homogeneous boundary conditions generate the desired incoming acoustic or vorticity
waves and, at the same time, allow the scattered or internally generated disturbances to leave
the computation domain with almost no reflections. These non-homogeneous boundary

Figure 7. Schematic diagram showing the interaction of a flat plate in a vertical gust.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1107–1123 (1998)



C.K.W. TAM ET AL.1122

Figure 8. Directivity of sound generated by the interaction of a flat plate in a vertical gust. l=wavelength of
incoming gust. —— Dx=l/8, . . . . Dx=l/16, - - - - - x=l/24.

conditions have been applied successfully to two benchmark aeroacoustics problems. In this
work, only two-dimensional problems have been considered. The methodology, however, can
be extended to three-dimensional problems.
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